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Effect of a resistive vacuum vessel on dynamo mode rotation in reversed
field pinches
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Locked ~i.e., nonrotating! dynamo modes give rise to a serious edge loading problem during the
operation of high current reversed field pinches. Rotating dynamo modes generally have a far more
benign effect. A simple analytic model is developed in order to investigate the slowing down effect
of electromagnetic torques due to eddy currents excited in the vacuum vessel on the rotation of
dynamo modes in both the Madison Symmetric Torus~MST! @Fusion Technol.19, 131~1991!# and
the Reversed Field Experiment~RFX! @Fusion Eng. Des.25, 335 ~1995!#. This model strongly
suggests that vacuum vessel eddy currents are the primary cause of the observed lack of mode
rotation in RFX. The eddy currents in MST are found to be too weak to cause a similar problem. The
crucial difference between RFX and MST is the presence of a thin, highly resistive vacuum vessel
in the former device. The MST vacuum vessel is thick and highly conducting. Various locked mode
alleviation methods are discussed. ©1999 American Institute of Physics.
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I. INTRODUCTION

A reversed field pinch~or RFP! is a magnetic fusion
device which is similar to a tokamak1 in many ways. Like a
tokamak, the plasma is confined by a combination of a
oidal magnetic field,Bf , and a poloidal magnetic field,Bu ,
in an axisymmetric toroidal configuration.2 Unlike a toka-
mak, whereBf@Bu , the toroidal and poloidal field strength
are comparable, and the RFP toroidal field is largely gen
ated by currents flowing within the plasma. The RFP conc
derives its name from the fact that the toroidal magnetic fi
spontaneously reverses direction in the outer regions of
plasma. This reversal is a consequence of relaxation
minimum energy state driven by intense magnetohydro
namical ~MHD! mode activity during the plasma start-u
phase.3 Intermittent, relatively low-level, mode activity
maintains the reversal, by dynamo action, throughout the
ration of the plasma discharge. As a magnetic fusion c
cept, the RFP has a number of possible advantages relati
the tokamak. The magnetic field strength at the coils is re
tively low, allowing the possibility of a copper-coil, as op
posed to a super-conducting-coil, reactor. Furthermore,
plasma current can, in principle, be increased sufficiently
allow ohmic ignition, thus negating the need for auxilia
heating systems.

A conventional RFP plasma is surrounded by a clo
fitting, thick, conducting shell whose L/R time is muc
longer than the duration of the discharge. Such a she
necessary in order to stabilize external kink modes wh
would otherwise rapidly destroy the plasma.4 In the presence
of the shell, the dominant MHD modes arem51 tearing
3871070-664X/99/6(10)/3878/12/$15.00
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modes resonant in the plasma core. These modes poss
range of toroidal mode numbers, characterized byn
;2R0 /a. Here,m,n are poloidal and toroidal mode num
bers, respectively, whereasa andR0 are the minor and majo
radii of the plasma, respectively. The core tearing modes
responsible for the dynamo action which maintains the fi
reversal, and are, therefore, generally known as dyna
modes.5

The Madison Symmetric Torus~MST!6 and the Re-
versed Field Experiment~RFX!7 are both large RFP experi
ments of broadly similar size and achieved plasma par
eters. Nevertheless, the observed dynamics of dyna
modes in these two devices is strikingly different.

In MST, the dynamo modes generally rotate, forming
toroidally localized, phase-locked structure, known as
‘‘slinky mode,’’8 which also rotates and extends over abo
one-fourth of the torus.9 The dynamo modes continually ex
ecute a so-called sawtooth cycle, in which their typical a
plitude gradually increases from a small value, until a critic
amplitude is reached at which a rapid global magnetic rec
nection event, known as a sawtooth crash, is triggered. A
the crash, the mode amplitudes return to their initial valu
and the process continues ad infinitum. Note that the dyna
action which maintains the field reversal is only significa
during the sawtooth crashes. The rotation of the dyna
modes is briefly arrested at each sawtooth crash, but ge
ally resumes afterward. However, in a small fraction
plasma discharges the dynamo modes fail to re-rotate a
the crash, setting in train a series of events which eventu
leads to the premature termination of the discharge.9 The
percentage of discharges in which this occurs is a sens
8 © 1999 American Institute of Physics
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function of the plasma parameters and the wall conditioni
but generally increases with increasing plasma current.

In RFX, the dynamo modes form a toroidally localize
‘‘slinky mode’’ which locks to the shell~along with the con-
stituent dynamo modes! during the plasma start-up phase a
remains locked, and, therefore, nonrotating, throughout
duration of the discharge.10 The stationary ‘‘slinky mode’’
does not significantly~i.e., by more than a factor 2, say!
degrade the overall plasma confinement,11 but gives rise to a
toroidally localized, stationary ‘‘hot spot’’ on the plasma fa
ing surface, presumably because the radial transport du
the diffusion of chaotic magnetic field lines peaks at the
roidal angle where the amplitude of the ‘‘slinky mode’’ a
tains its maximum value. If the plasma current is made s
ficiently large, this ‘‘hot spot’’ overheats the facing surfac
leading to the influx of impurities into the plasma, and t
eventual termination of the discharge. Indeed, the maxim
achievable plasma current in RFX is limited by this effe
Similar edge loading problems are not observed on M
presumably because the ‘‘hot spot’’ associated with
‘‘slinky mode’’ rotates~since the constituent dynamo mod
rotate!.

It is clear, from the above discussion, that the occurre
of severe edge loading problems in RFX, and the rela
absence of such problems in MST, is a consequence o
fact that dynamo modes are generally stationary in RFX
usually rotate in MST. Note that other RFPs, in particular
Toroidal Pinch eXperiment-RX~TPE-RX! device,12,13 ex-
hibit edge loading problems, associated with locked dyna
modes, which are similar to those observed on RFX. T
possible explanations have been proposed for the lac
mode rotation in RFX. The first explanation focuses on
fact that the stabilizing shell is~relatively speaking! farther
away from the plasma in RFX than in MST. This can
expected to destabilize the dynamo modes in RFX, rela
to those in MST, thereby increasing their saturated am
tude, and, hence, making them more prone to lock to s
error fields. ~Note that the error fields in RFX are onl
slightly larger than those in MST. Moreover, the error fiel
in TPE-RX are undoubtedly much less than those in MS
Hence, the different dynamo mode dynamics observed
MST, RFX, and TPE-RX cannot be explained in terms of
intrinsic error-field levels in these devices.! However, this
effect is thought to be too weak to account for the obser
difference in dynamo mode dynamics between MST a
RFX.14 The second explanation focuses on the fact tha
MST the conducting shell is also the vacuum vessel, whe
in RFX a thin resistive vacuum vessel is located between
shell and the edge of the plasma. In tokamaks, it is w
known that eddy currents induced in a resistive vacuum v
sel can effectively arrest mode rotation, provided that
mode amplitude becomes sufficiently large.15 In this paper,
we investigate whether similar eddy currents induced in
RFX vacuum vessel can account for the absence of m
rotation in this device~and the presence of mode rotation
MST!.

The model adopted in this paper is rather simplistic.
stead of considering a range of unstablem51 modes, we
concentrate on the dynamics of a single representative
Downloaded 18 Mar 2005 to 128.104.223.90. Redistribution subject to AIP
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namo mode in the presence of a thin resistive vacuum ve
surrounded by a thick conducting shell. Furthermore,
only consider zero-b, large aspect-ratio plasmas. Neverth
less, we believe that our model is sufficiently realistic
allow us to determine whether vacuum vessel eddy curre
can account for the observed difference in dynamo m
dynamics between RFX and MST.

II. PRELIMINARY ANALYSIS

A. The plasma equilibrium

Consider a large aspect-ratio,16 zero-b,17 RFP plasma
equilibrium whose unperturbed magnetic flux-surfaces m
out ~almost! concentric circles in the poloidal plane. Such
equilibrium is well approximated as a periodic cylinder. Su
pose that the minor radius of the plasma isa. Standard cy-
lindrical polar coordinates (r ,u,z) are adopted. The system
is assumed to be periodic in thez-direction, with periodicity
length 2pR0 , whereR0 is the simulated major radius of th
plasma. It is convenient to define a simulated toroidal an
f5z/R0 .

The equilibrium magnetic field is written

B5@0,Bu~r !,Bf~r !#. ~1!

The model RFP equilibrium adopted in this paper is the w
known a2Q0 model,18 according to which

¹∧B5s~r !B, ~2!

where

s5S 2Q0

a D F12S r

aD aG . ~3!

Here,Q0 anda are positive constants.
It is conventional2 to parameterize RFP equilibria i

terms of the pinch parameter,

Q5
Bu~a!

^Bf&
, ~4!

and the reversal parameter,

F5
Bf~a!

^Bf&
, ~5!

where^¯& denotes a volume average.

B. Outline of the problem

Suppose that the plasma is surrounded by a concen
thin, resistive vacuum vessel of minor radiusb. The vacuum
vessel is, in turn, surrounded by a concentric, perfectly c
ducting shell of minor radiusc. The arrangement of conduc
ing shells surrounding the plasma is illustrated in Fig. 1. T
paper investigates the effect of any helical eddy currents
cited in the vacuum vessel on the rotation of a typical c
tearing mode: them,n mode, say. All other modes in th
plasma are ignored, for the sake of simplicity.

C. The perturbed magnetic field

The magnetic perturbation associated with them,n tear-
ing mode can be written
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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b~r !5bm,n~r !ei ~mu2nf!, ~6!

wherem andn are poloidal and toroidal mode numbers, r
spectively, and

br
m,n5

icm,n

r
, ~7!

bu
m,n52

m~cm,n!8

m21n2e2 1
nescm,n

m21n2e2 , ~8!

bf
m,n5

ne~cm,n!8

m21n2e2 1
mscm,n

m21n2e2 . ~9!

Here,8 denotesd/dr. Furthermore,

e~r !5
r

R0
. ~10!

In this paper it is assumed thatm>0.
The linearized magnetic flux functioncm,n(r ) satisfies

Newcomb’s equation,19

d

dr F f m,n
dcm,n

dr G2gm,ncm,n50, ~11!

where

f m,n~r !5
r

m21n2e2 , ~12!

gm,n~r !5
1

r
1

r ~neBu1mBf!

~m21n2e2!~mBu2neBf!

ds

dr

1
2mnes

~m21n2e2!22
rs2

m21n2e2 . ~13!

As is well-known, Eq.~11! is singular at them/n rational
surface, minor radiusr s

m,n , which satisfies

mBu~r s
m,n!2nBf~r s

m,n!50. ~14!

In the vacuum region~s50! surrounding the plasma, th
most general solution to Newcomb’s equation takes the fo

cm,n5Aim~ne!1Bkm~ne!, ~15!

whereA, B are arbitrary constants, and

i m~ne!5uneuI m11~ uneu!1mIm~ uneu!, ~16!

km~ne!52uneuKm11~ uneu!1mKm~ uneu!. ~17!

FIG. 1. The arrangement of conducting shells surrounding the plasm
Downloaded 18 Mar 2005 to 128.104.223.90. Redistribution subject to AIP
-
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Here, I m , Km represent standard modified Bessel functio
For the special casen50, the most general vacuum solutio
is written

cm,05Aem1Be2m. ~18!

D. Standard tearing eigenfunctions

Let

ĉs
m,n~r ,d! ~19!

represent the normalizedm,n tearing eigenfunction calcu
lated assuming the presence of a perfectly conducting she
minor radiusd. In other words,ĉs

m,n(r ,d) is a real solution
to Newcomb’s equation~11! which is well behaved asr
→0, and satisfies

ĉs
m,n~r s

m,n ,d!51, ~20!

ĉs
m,n~d,d!50. ~21!

It is easily demonstrated thatĉs
m,n(r ,d) is zero in the region

r .d. In general,ĉs
m,n(r ,d) possesses gradient discontinu

ties atr 5r s
m,n and r 5d. The quantity

Em,n~d!5F r
dĉs

m,n~r ,d!

dr
G

r
s2
m,n

r s1
m,n

~22!

can be identified as the standardm,n tearing stability
index,20 calculated assuming the presence of a perfectly c
ducting shell at minor radiusd. A typical tearing eigenfunc-
tion, ĉs

m,n(r ,d), is sketched in Fig. 2.

E. Modified tearing eigenfunctions

In the presence of a resistive vacuum vessel, minor
dius b, and a perfectly conducting shell, minor radiusc, the
most generalm,n tearing eigenfunction is written

cm,n~r !5Cs
m,nĉs

m,n~r ,b!1Cb
m,nĉb

m,n~r ,b,c!, ~23!

whereCs
m,n andCb

m,n are complex parameters which dete
mine the amplitude and phase of them,n tearing perturba-
tion at the rational surface and vacuum vessel, respectiv

FIG. 2. A typical normalizedm,n tearing eigenfunction,ĉs
m,n(r ,d), calcu-

lated assuming the presence of a perfectly conducting shell at minor ra
d.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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Note thatĉb
m,n(r ,b,c) is a real solution to Newcomb’s equa

tion which is well behaved asr→0, and satisfies

ĉb
m,n~r s

m,n ,b,c!50, ~24!

ĉb
m,n~b,b,c!51, ~25!

ĉb
m,n~c,b,c!50. ~26!

It is easily demonstrated thatĉb
m,n(r ,b,c) is only nonzero for

r in the ranger s
m,n,r ,c. In general,ĉb

m,n(r ,b,c) possesses
gradient discontinuities atr 5r s

m,n , r 5b, andr 5c. A typi-
cal interaction eigenfunction,ĉb

m,n(r ,b,c), which parameter-
izes the interaction between them,n tearing mode and any
eddy currents flowing in the resistive vacuum vessel, mi
radiusb, in the presence of a perfectly conducting shell
minor radiusc, is sketched in Fig. 3.

F. The modified tearing dispersion relation

The dispersion relation for them,n tearing mode in the
presence of the resistive vacuum vessel and perfectly
ducting shell takes the form

FIG. 3. A typical normalizedm,n interaction eigenfunction,ĉb
m,n(r ,b,c).

This eigenfunction parameterizes the interaction between them,n tearing
mode and any eddy currents flowing in the resistive vacuum vessel, m
radiusb, in the presence of a perfectly conducting shell of minor radiusc.
Downloaded 18 Mar 2005 to 128.104.223.90. Redistribution subject to AIP
r
f

n-

DCs
m,n5Em,n~b!Cs

m,n1Esb
m,nCb

m,n , ~27!

DCb
m,n52

Esb
m,nEbs

m,n

Em,n~c!2Em,n~b!
Cb

m,n1Ebs
m,nCs

m,n , ~28!

where

DCs
m,n5F r

dcm,n

dr G
r
s2
m,n

r s1
m,n

~29!

is a complex parameter which determines the amplitude
phase of them,n eddy currents flowing in the vicinity of the
m,n rational surface, whereas

DCb
m,n5F r

dcm,n

dr G
b2

b1

~30!

is a complex parameter which determines the amplitude
phase of them,n eddy currents flowing in the vacuum ve
sel. Furthermore,

Esb
m,n5S r

dĉb
m,n~r ,b,c!

dr
D

r
s1
m,n

~31!

and

Ebs
m,n52S r

dĉs
m,n~r ,b!

dr
D

b2

~32!

are both real parameters.
It is easily demonstrated from Newcomb’s equation~11!

that

~m21n2eb
2!Esb

m,n5~m21n2es
2!Ebs

m,n , ~33!

whereeb5b/R0 and es5r s
m,n/R0 . It is also easily demon-

strated that

ĉb
m,n~r ,b,c!5

Esb
m,n

Em,n~c!2Em,n~b!
$ĉs

m,n~r ,c!

2ĉs
m,n~r ,b!%. ~34!

In the vacuum region outside the plasma

or
ĉs
m,n~r ,b!5H ĉs

m,n~a,b!
km~neb!i m~ne!2km~ne!i m~neb!

km~neb!i m~nea!2km~nea!i m~neb!
a<r<b

0 r .b

, ~35!
al

ing
whereea5a/R0 . It follows from Eqs.~32! and ~33! that

Ebs
m,n5

ĉs
m,n~a,b!~m21n2eb

2!

km~neb!i m~nea!2km~nea!i m~neb!
, ~36!

Esb
m,n5

ĉs
m,n~a,b!~m21n2es

2!

km~neb!i m~nea!2km~nea!i m~neb!
. ~37!

For the special casen50,
Ebs
m,05Esb

m,05mĉs
m,0~a,b!

b2m1a2m

b2m2a2m . ~38!

It is clear, from the above analysis, that all of the re
parameters appearing in the modifiedm,n tearing dispersion
relation ~27!–~28! @i.e., Em,n(b), Em,n(c), Ebs

m,n , Esb
m,n] can

be calculated from a knowledge of the standard tear
eigenfunctionĉs

m,n(r ,d).
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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G. Shell physics

Suppose that the vacuum vessel is of radial thicknesdb

and conductivitysb . The time constant of the vessel is d
fined

tb5m0sbdbb. ~39!

Adopting the thin-shell approximation, in which it is a
sumed that there is virtually no radial variation of the tear
eigenfunctionĉm,n(r ) across the vessel, the dispersion re
tion of the vacuum vessel takes the form

DCb
m,n5 inVstbCb

m,n . ~40!

Here, it is assumed that them,n tearing mode is saturate
~i.e., its amplitude is fixed! and co-rotates with the plasma
its associated rational surface. The plasma is assumed t
tate in the toroidal direction only, for the sake of simplicit
Although the poloidal rotation in RFPs is generally nonze
it is usually smaller than the toroidal rotation, so its negl
is unlikely to dramatically change any of the results obtain
in this paper. In the above,

Vs5V~r s
m,n! ~41!

is the toroidal angular velocity of the plasma at them,n
rational surface, andV(r ) is the plasma toroidal angula
velocity profile. Note that the thin-shell approximation
valid provided

db

b
!nVstb!

b

db
. ~42!

Equations~27!, ~28!, and~40! yield

DCs
m,n5H Em,n~b!1

@Em,n~c!2Em,n~b!#

11 ilm,n J Cs
m,n , ~43!

where

lm,n5
nVstb@Em,n~c!2Em,n~b!#

Esb
m,nEbs

m,n . ~44!

The thin-shell approximation is valid provided that

lm,n!lc
m,n , ~45!

where

lc
m,n5

b

db

@Em,n~c!2Em,n~b!#

Esb
m,nEbs

m,n . ~46!

H. Electromagnetic torques

The toroidal electromagnetic slowing down torque a
ing in the vicinity of them,n rational surface due to edd
currents flowing in the vacuum vessel is given by8

dTfEM
m,n 5

2p2R0

m0

n

m21n2es
2 Im$DCs

m,n~Cs
m,n!* %. ~47!

It follows from Eq. ~43! that

dTfEM
m,n 52

2p2R0

m0

nuCs
m,nu2

m21n2es
2

lm,n

11~lm,n!2

3@Em,n~c!2Em,n~b!#. ~48!
Downloaded 18 Mar 2005 to 128.104.223.90. Redistribution subject to AIP
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I. Viscous torques

The change in the plasma toroidal angular velocity
duced by the electromagnetic slowing down torque is writ

DV~r !5DVsH E
r

a dr

rmYE
r s
m,n

a dr

rm
r s

m,n<r<a

1 r ,r s
m,n

, ~49!

wherem(r ) is the plasma~perpendicular! viscosity profile,
and

DVs5Vs2Vs
~0! . ~50!

Here,Vs
(0) is the value ofVs in the absence of eddy curren

flowing in the vacuum vessel. In the above, it is assumed
the edge plasma rotation is unaffected by the electromagn
slowing down torque@i.e.,DV(a)50]. The assumptions un
derlying the analysis in this section are described in m
detail in Ref. 21. Note, in particular, that it is possible
generalize the analysis to take account of the fact that tea
modes do not generally co-rotate with the ion fluid in RF
without significantly changing any of the results obtained
this paper.

The viscous restoring torque acting in the vicinity of th
rational surface is written

dTfVS
m,n 54p2R0F rmR0

2 dDV

dr G
r
s2
m,n

r s1
m,n

. ~51!

It follows from Eqs.~49! and ~50! that

dTfVS
m,n 54p2R0

3@Vs
~0!2Vs#YE

r s
m,n

a dr

rm
. ~52!

J. Torque balance

Torque balance in the vicinity of the rational surfa
requires that

dTfEM
m,n 1dTfVS

m,n 50. ~53!

It follows from Eqs.~48! and ~52! that

S bs
m,n

LB0
D 2 lm,n

11~lm,n!2 5l~0!
m,n2lm,n, ~54!

where

l~0!
m,n5

nVs
~0!tb@Em,n~c!2Em,n~b!#

Esb
m,nEbs

m,n , ~55!

B0 is a typical equilibrium magnetic field strength,

bs
m,n5

uCs
m,nu

r s
m,n ~56!

is the perturbed radial magnetic field strength at them,n
rational surface,

tH5
Am0r0a

B0
~57!

is a typical hydromagnetic time scale,
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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tV5
r0a2

m~0!
~58!

is a typical viscous diffusion time scale,r0 is the central
plasma mass density, and

L5F2
tH

2

tbtV

m21n2es
2

n2es
2

Esb
m,nEbs

m,n

@Em,n~c!2Em,n~b!#2Y
E

r s
m,n

a m~0!

m~r !

dr

r G1/2

. ~59!

III. ASYMPTOTIC REGIMES FOR SLOWING DOWN
VIA VESSEL EDDY CURRENTS

A. Introduction

Three separate asymptotic regimes for the slowing do
of dynamo mode rotation via eddy currents induced in
resistive vacuum vessel can be identified from the preced
analysis. These regimes, which correspond to different or
ings for the intrinsic mode rotation parameterl (0)

m,n @see Eq.
~55!#, are discussed in the following.

B. The ultra-thin-shell regime

The ultra-thin-shell regime corresponds to the orderin

l~0!
m,n!1, ~60!

in which either the intrinsic plasma rotation is very low
the vacuum vessel is extremely thin. In this regime, ther
virtually no shielding of the tearing perturbation by th
vacuum vessel: i.e., the perturbation amplitude remains
nificant in the regionb,r ,c. In this case, the torque ba
ance equation~54! reduces to

V̂s.
1

11~bs
m,n/LB0!2 , ~61!

where

V̂s5
Vs

Vs
~0! ~62!

is the normalized dynamo mode rotation velocity. It can
seen that the mode rotation decreases smoothly and m
tonically as the mode amplitudebs

m,n is increased. The rota
tion is significantly reduced~compared to its value in the
absence of vacuum vessel eddy currents! whenever

bs
m,n@LB0 . ~63!

C. The thin-shell regime

The thin-shell regime corresponds to the ordering

1!l~0!
m,n!lc

m,n . ~64!

In this regime, there is strong shielding of the tearing pert
bation by the vacuum vessel: i.e., the perturbation amplit
is insignificant in the regionb,r ,c. Nevertheless, the basi
thin-shell approximation orderingnVstb!b/db still holds.
In this case, the torque balance equation~54! reduces to
Downloaded 18 Mar 2005 to 128.104.223.90. Redistribution subject to AIP
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1
21 1

2 A12~bs
m,n/L8B0!2, ~65!

where

L85
l~0!

m,nL

2
5F tH

2 tb~nVs
~0!!2

2tV

m21n2es
2

n2es
2

1

Esb
m,nEbs

m,nY
E

r s
m,n

a m~0!

m~r !

dr

r G1/2

. ~66!

Note that whenbs
m,n exceeds the critical valueL8B0 , the

mode bifurcates to a slowly rotating state characterized
Vstb;O(1). This bifurcation is irreversible, in the sens
that bs

m,n must be reduced substantially before the reve
bifurcation takes place. Thus, the mode rotation is effectiv
arrested whenever

bs
m,n.L8B0 . ~67!

Note that bifurcations only occur for21

l~0!
m,n.3A355.196. ~68!

D. The thick-shell regime

The thick-shell regime corresponds to the ordering

lc
m,n!l~0!

m,n . ~69!

In this regime, there is very strong shielding of the teari
perturbation by the vacuum vessel: i.e., the perturbation
plitude is zero in the regionb,r ,c. The dispersion relation
of the shell, Eq.~40!, is replaced by22

DCb
m,n5S inVstb

b

db
D 1/2

Cb
m,n . ~70!

It follows that

DCs
m,n.e2 ip/4

Esb
m,nEbs

m,n

~nVstbb/db!1/2Cs
m,n . ~71!

Hence,

dTfEM
m,n .2

A2p2R0

m0

nuCs
m,nu2

m21n2es
2

Esb
m,nEbs

m,n

~nVstbb/db!1/2. ~72!

Torque balance yields

A27

2
V̂s

1/2~12V̂s!5S bs
m,n

L9B0
D 2

, ~73!

where

L95F4A2

A27

tH
2 ~nVs

~0!!3/2~tbb/db!1/2

tV

m21n2es
2

n2es
2

3
1

Esb
m,nEbs

m,nYE
r s
m,n

a m~0!

m~r !

dr

r G 1/2

. ~74!

Note that whenbs
m,n exceeds the critical valueL9B0 , the

mode bifurcates to a slowly rotating state characterized
Vstb;O(1). This bifurcation is irreversible, in the sens
that bs

m,n must be reduced substantially before the reve
bifurcation takes place. Thus, the mode rotation is effectiv
arrested whenever
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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bs
m,n.L9B0 . ~75!

IV. ESTIMATE OF CRITICAL PLASMA PARAMETERS

A. Introduction

In order to proceed further, it is necessary to estimat
number of critical plasma parameters which cannot be
rectly measured on MST or RFX.

B. Estimate of the mode rotation velocity

In the preceding analysis, the parameterVs
(0) represents

the toroidal angular phase velocity of a typical dynamo mo
in the absence of vacuum vessel eddy currents. Of cou
this quantity can be measured directly in MST, where it
found that23

uf
~0!5R0Vs

~0!.10 km s21. ~76!

Unfortunately, it is impossible to measureVs
(0) on RFX,

since dynamo modes are never observed to rotate in
device. It is, therefore, necessary to estimate what the typ
toroidal angular phase velocity of dynamo modes would
on RFX in the absence of slowing down torques due
vacuum vessel eddy currents.

Theoretically,uf
(0) is expected to be the sum of the to

oidal E∧B and electron diamagnetic velocities evaluated
the plasma core.24 However, an RFP is characterized by
stochastic magnetic core generated by overlapping dyn
modes. The stochastic core gives rise to the developmen
an ambipolar electric field which reduces outward rad
electron transport along magnetic field lines to the level
the corresponding ion transport. TheE∧B velocity associated
with this electric field scales like an electron diamagne
velocity.25 It follows that uf

(0) should also scale as an ele
tron diamagnetic velocity, giving

nVs
~0!.6

mTe0~eV!

a2B0
. ~77!

Here,Te0 is the central electron temperature. The factor 6
necessary in order to ensure that the above formula yi
uf

(0).10 km s21 for typical MST parameters.

C. Estimate of the plasma viscosity

Plasma viscosity is not usually directly measured
RFPs. It is, therefore, necessary to estimate the plasma
cosity in terms of quantities which are measured.

Suppose that the plasma viscosity profile takes the fo

m~r !5H ` r ,r c

mc r c<r<a
. ~78!

In other words, there is zero momentum confinement in
stochastic core,r ,r c , and the viscosity is approximatel
constant in the outer regions of the plasma. Suppose, fur
that the intrinsic plasma rotation at the edge is negligi
small @i.e., V (0)(a).0] and that all of the toroidal momen
tum input to the plasma takes place inside the core. In
case, it is easily demonstrated that
Downloaded 18 Mar 2005 to 128.104.223.90. Redistribution subject to AIP
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V~0!~r !5Vc
~0!H 1 r ,r c

ln~r /a!/ ln~r c /a! r c<r<a
. ~79!

In other words, the plasma rotation is uniform in the stoch
tic core, and highly sheared in the outer regions of
plasma.

The viscous diffusion time scale~58! is conveniently
redefined

tV5
r0a2

mc
. ~80!

Suppose that the plasma density profile is approximately
form. It follows that the momentum confinement timetM

~defined as the ratio of the net plasma toroidal angular m
mentum to the toroidal angular momentum injection rate! is
related totV via

tV52
a3dV~0!~a!/dr

*0
aV~0!rdr

tM . ~81!

Hence,

tV5
4tM

12~r c /a!2 . ~82!

In this paper, it is assumed that

tM.tE , ~83!

wheretE is the energy confinement time~which is measured
in both MST and RFX!. This is a plausible assumption, sinc
whenevertM has been measured in toroidal fusion device
has been found to be very similar in magnitude totE .26,27 It
follows that

tVE
r s
m,n

a m~0!

m~a!

dr

r
→ktE ~84!

in Eqs.~59!, ~66!, and~74!, where

k5
4 ln~a/r c!

12~r c /a!2 . ~85!

V. SLOWING DOWN CALCULATIONS

A. The Madison Symmetric Torus

In MST, the plasma is surrounded by a single 5 cm th
aluminum~alloy 6061-T6! shell which simultaneously play
the role of the vacuum vessel and the stabilizing shell. Si
there is no perfectly conducting shell surrounding this fin
resistivity shell, the parameterc takes the valuè ~i.e., the
perfectly conducting shell of the preceding analysis is
cated infinitely far away from the plasma!. The typical shell
and plasma parameters for MST6 are listed in Table I. It
follows that

tH5
Am0mpne0 a

B0
55.531027 s, ~86!

nVs
~0!56

Te0~eV!

a2B0
54.03104 rad s21, ~87!

tb5m0sbdbb50.82 s. ~88!
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TABLE I. Typical MST parameters.

Parameter Units Symbol Value

Major radius m R0 1.5
Plasma minor radius m a 0.51
Toroidal plasma current kA I f 340
Equilibrium magnetic field strength T B0[Bu(a)5m0I f/2pa 0.13
Central electron temperature eV Te0 230
Central electron number density m23 ne0 131019

Energy confinement time ms tE 1
Vacuum vessel minor radius m b 0.52
Vacuum vessel thickness cm db 5
Vacuum vessel resistivity Vm 1/sb 4.031028
s

D
w

al
a

e
-

er-
he
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ty,
r-

rds,
he

nd
in
The typical equilibrium parameters for MST areea

50.34,a53.0,Q051.71,F520.2, andQ51.59. Here, we
have adopted a somewhat low value ofa in order to com-
pensate for the absence of pressure in our model~the final
result turns out to be fairly insensitive to this parameter!. The
characteristic dynamo mode for this equilibrium is them
51, n56 mode. It is easily demonstrated thatr s

1,6

50.3381a, so that nes50.69. Furthermore, Newcomb’
equation can be solved to give

E1,6~b!51.038, ~89!

E1,6~c!517.59, ~90!

Ebs
1,655.826, ~91!

Esb
1,651.614. ~92!

Finally, the radius of the stochastic plasma core is taken
be r c50.7a, yielding

k5
4 ln~a/r c!

12~r c /a!2 52.8. ~93!

The parametersl (0)
1,6 andlc

1,6 take the values

l~0!
1,65

nVs
~0!tb@E1,6~c!2E1,6~b!#

Esb
1,6Ebs

1,6 55.73104, ~94!

and

lc
1,65

b

db

@E1,6~c!2E1,6~b!#

Esb
1,6Ebs

1,6 518.3, ~95!

respectively. It can be seen that

lc
1,6!l~0!

1,6 ~96!

in MST. Thus, the thick-shell regime, discussed in Sec. III
is applicable. It follows that the eddy currents which slo
down the rotation of the 1,6 mode do not penetrate the
minum shell, but are, instead, radially localized within
skin-depth of its inner boundary.

According to Eq. ~73!, the relationship between th
mode amplitude parameterbs

1,6 and the normalized mode ro
tation parameterV̂s in MST is

A27

2
V̂s

1/2~12V̂s!5S bs
1,6

L9B0
D 2

, ~97!

where
 2005 to 128.104.223.90. Redistribution subject to AIP
to

,

u-

L95F 4A2

A27k

tH
2 ~nVs

~0!!3/2~tbb/db!1/2

tE

m21n2es
2

n2es
2

1

Esb
1,6Ebs

1,6G 1/2

53.031022. ~98!

The parameterbs
m,n can be related to the nominalm,n mag-

netic island widthWs
m,n via

Ws
m,n

a
54F r s

m,n

a

bs
m,n

~Fs
m,n!8B0

G1/2

, ~99!

where

~Fs
m,n!85

a

B0
Fd~mBu2neBf!

dr G
r
s
m,n

. ~100!

It is easily demonstrated that (Fs
1,6)851.44 for the equilib-

rium in question. Thus,Ws
1,6/a51.94(bs

1,6/B0)1/2. Further-
more, in the thick-shell regime the amplitudes of the p
turbed poloidal and toroidal magnetic fields just inside t
aluminum shell~which is where the Mirnov coils are locate
in MST! are related tobs

m,n via

bub
m,n5

m

m21n2eb
2 Ebs

m,nbs
m,n , ~101!

bfb
m,n5

neb

m21n2eb
2 Ebs

m,nbs
m,n . ~102!

Hence,bub
1,651.09bs

1,6 andbfb
1,652.28bs

1,6.

B. The reversed field experiment

In RFX, the plasma is surrounded by a high resistivi
inconel ~alloy 625! vacuum vessel which is, in turn, su
rounded by a 6.5 cm thick aluminum~alloy 6061-T6! shell.
In the following, we ignore the resistivity of the aluminum
shell compared to that of the vacuum vessel. In other wo
the aluminum shell is treated as a perfect conductor. T
typical shell and plasma parameters for RFX7 are listed in
Table II. The chosen values for the effective thickness a
the effective resistivity of the vacuum vessel are justified
the appendix. It follows that

tH5
Am0mpne0 a

B0
54.031027 s, ~103!
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TABLE II. Typical RFX parameters.

Parameter Units Symbol Value

Major radius m R0 2.0
Plasma minor radius m a 0.457
Toroidal plasma current kA I f 600
Equilibrium magnetic field strength T B0[Bu(a)5m0I f/2pa 0.26
Central electron temperature eV Te0 230
Central electron number density m23 ne0 231019

Energy confinement time ms tE 1
Vacuum vessel minor radius m b 0.490
Vacuum vessel~effective! thickness mm db 3.5
Vacuum vessel~effective! resistivity Vm 1/sb 64.731028

Stabilizing shell minor radius m c 0.535
Stabilizing shell thickness cm dc 6.5
Stabilizing shell resistivity Vm 1/sc 4.431028
e
-

ll
o-
m

the

is
the

ated
the
of

ver,
nVs
~0!56

Te0~eV!

a2B0
52.53104 rad s21, ~104!

tb5m0sbdbb53.331023 s. ~105!

The typical equilibrium parameters for RFX areea

50.23,a53.5,Q051.65,F520.2, andQ51.56. Here, we
have again adopted a somewhat low value ofa in order to
compensate for the absence of pressure in our model.
characteristic dynamo mode for this equilibrium is them
51, n59 mode. It is easily demonstrated thatr s

1,9

50.384a, so that nes50.79. Furthermore, Newcomb’s
equation can be solved to give

E1,9~b!50.433, ~106!

E1,9~c!51.258, ~107!

Ebs
1,955.467, ~108!

Esb
1,951.513. ~109!

Finally, the radius of the stochastic plasma core is ag
taken to ber c50.7a, yielding k52.8.

The parametersl (0)
1,9 andlc

1,9 take the values

l~0!
1,95

nVs
~0!tb@E1,9~c!2E1,9~b!#

Esb
1,9Ebs

1,9 58.36, ~110!

and

lc
1,95

b

db

@E1,9~c!2E1,9~b!#

Esb
1,9Ebs

1,9 514.0, ~111!

respectively. Note that

1!l~0!
1,9!lc

1,9, ~112!

so the thin-shell regime, discussed in Sec. III, is applicab
According to Eq. ~54!, the relationship between th

mode amplitude parameterbs
1,9 and the normalized mode ro

tation parameterV̂s in RFX is

~12V̂s!@11~8.36V̂s!
2#

V̂s

5S bs
1,9

LB0
D 2

, ~113!

where
 2005 to 128.104.223.90. Redistribution subject to A
The

ain

le.

L5F 2

k

tH
2

tbtE

m21n2es
2

n2es
2

Esb
1,9Ebs

1,9

@E1,9~c!2E1,9~b!#2G1/2

51.031023. ~114!

It is easily demonstrated that (Fs
1,9)851.73 for the equilib-

rium in question. Thus,Ws
1,9/a51.88(bs

1,9/B0)1/2, where use
has been made of Eq.~99!. Furthermore, since the thin-she
approximation is valid, the amplitudes of the perturbed p
loidal and toroidal magnetic fields just inside the aluminu
shell ~which is where the Mirnov coils are located in RFX!
are related tobs

m,n via

buc
m,n5

m

m21n2ec
2

Ecs
m,n

@11~lm,n!2#1/2bs
m,n , ~115!

bfc
m,n5

nec

m21n2ec
2

Ecs
m,n

@11~lm,n!2#1/2bs
m,n , ~116!

where

Ecs
m,n5

ĉs
m,n~a,c!~m21n2ec

2!

km~nec!i m~nea!2km~nea!i m~nec!
. ~117!

Now, Ecs
1,956.625 for the equilibrium in question, so

buc
1,95

0.975bs
1,9

@11~8.36V̂s!
2#1/2, ~118!

bfc
1,95

2.15bs
1,9

@11~8.36V̂s!
2#1/2. ~119!

C. Results

Figure 4 shows the toroidal angular phase velocityVs of
the characteristic dynamo mode plotted as a function of
associated saturated island widthWs at the rational surface
for both MST and RFX. Note that the characteristic mode
the 1,6 mode for the case of MST and the 1,9 mode for
case of RFX.

For the case of MST, it can be seen that as the satur
island width is gradually increased, the phase velocity of
characteristic mode is gradually reduced via the action
eddy currents excited in the vacuum vessel. Note, howe
IP license or copyright, see http://pop.aip.org/pop/copyright.jsp
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that if the phase velocity falls below a certain critical valu
corresponding to one-third of its value in the absence of e
currents, then a bifurcation to a branch of solutions on wh
the mode is effectively nonrotating is triggered. The bifurc
tion point is indicated by a triangle in Fig. 4. Likewise, th
bifurcation path~from the rotating to the nonrotating branc
of solutions! is shown as a dotted line. The bifurcation
irreversible: i.e., once the mode has made the transitio
the nonrotating branch of solutions the saturated island w
must be reduced substantially before the reverse trans
takes place.

For the case of RFX, it can be seen that as the satur
island width is gradually increased the phase velocity of
characteristic mode is gradually reduced via the action
eddy currents excited in the vacuum vessel. Note, howe
that this reduction in phase velocity takes place far m
rapidly, and at significantly lower values of the saturat
island width, than in MST. This is largely due to the fact th
the RFX vacuum vessel is much more resistive than the M
vessel. As before, if the phase velocity falls below a cert
critical value, corresponding to 0.47 of its value in the a
sence of eddy currents, then a bifurcation to a slowly rotat
branch of solutions is triggered. The bifurcation points a
indicated by triangles in Fig. 4. Likewise, the bifurcatio
path~from the rapidly to the slowly rotating branch of solu
tions! is shown as a dotted line. The bifurcation is irreve
ible, in the sense discussed above.

Now, the typical saturated island width of a dynam
mode in an RFP plasma is approximately 20% of the mi
radius ~see, for instance, Figs. 4 and 1 in Refs. 23 and
respectively!. Note, from Fig. 4, that ifWs /a.0.2 then our
model predicts that dynamo mode rotation in MST is vir
ally unaffected by vacuum vessel eddy currents, whereas
mode rotation in RFX is essentially eliminated by such c
rents. This observation leads us to conjecture that the
served lack of mode rotation in RFX, compared to MST, i

FIG. 4. The toroidal angular phase velocityVs of the characteristic dynamo
mode ~normalized to the corresponding velocityVs

(0) in the absence of
vacuum vessel eddy currents! as a function of the associated saturated isla
width Ws ~normalized with respect to the minor radius of the plasmaa!
calculated for MST~long-dashed line! and RFX~short-dashed line!.
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direct consequence of the eddy currents induced in the R
vacuum vessel.

Figure 5 shows the toroidal angular phase velocityVs of
the characteristic dynamo mode plotted as a function of
associated perturbed poloidal magnetic fieldbu calculated at
the radius of the Mirnov coils for both MST and RFX. It ca
be seen that rotation is predicted to collapse in MST wh
the ratio bu /Bu(a) exceeds about 3%. SinceBu(a).1300
gauss~see Table I!, it follows that the critical value ofbu

needed to arrest the mode rotation in MST is about 40 ga
This is a larger value than is generally observed in MS
except perhaps at sawtooth crashes. Thus, eddy cu
torques are almost certainly insignificant in MST during t
sawtooth ramp phase, but may play a role in the sud
slowing down of mode rotation seen at sawtooth crash9

The mode rotation is predicted to collapse in RFX when
ratio bu /Bu(a) exceeds about 0.1%. SinceBu(a).2600
gauss~see Table II!, it follows that the critical value ofbu

needed to arrest the mode rotation in RFX is about 3 ga
This is a significantly smaller value than is generally o
served in RFX,14 which lends further credence to our conje
ture that vacuum vessel eddy currents are the primary ca
of the lack of dynamo mode rotation in this device.

Figure 6 shows the toroidal angular phase velocityVs of
the characteristic dynamo mode plotted as a function of
associated perturbed toroidal magnetic fieldbf calculated at
the radius of the Mirnov coils for both MST and RFX. No
that bf;2bf in both devices.

Preliminary calculations for TPE-RX indicate that th
torque curve for this device lies between those for MST a
RFX. In other words, the slowing down problem in TPE-R
is predicted to be significantly worse than that in MST, b
not as bad as that in RFX, in accordance with experime
observations.

FIG. 5. The toroidal angular phase velocityVs of the characteristic dynamo
mode ~normalized to the corresponding velocityVs

(0) in the absence of
vacuum vessel eddy currents! as a function of the associated perturbed p
loidal magnetic fieldbu seen at the Mirnov coils@normalized with respect to
the edge equilibrium magnetic fieldBu(a)] calculated for MST~long-
dashed line! and RFX~short-dashed line!.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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VI. SUMMARY

Locked ~i.e., nonrotating! dynamo modes give rise to
serious edge loading problem during the operation of h
current reversed field pinches. Rotating dynamo modes g
erally have a far more benign effect. Dynamo modes
usually observed to rotate in MST, whereas in RFX the
modes remain locked throughout the duration of the plas
discharge. The locked dynamo modes in RFX are a caus
concern because they limit the maximum achievable pla
current.

An analytic model has been developed in order to inv
tigate the slowing down effect of electromagnetic torqu
due to vacuum vessel eddy currents on the rotation of
namo modes in both MST and RFX. Despite the mode
simplicity, the results of our investigation are sufficient
clear-cut to enable us to conclude, with some degree of
tainty, that vacuum vessel eddy currents are the prim
cause of the observed lack of dynamo mode rotation in R
The corresponding eddy currents in MST are found to be
weak to cause a similar problem. The crucial difference
tween RFX and MST is the presence of a thin, highly res
tive vacuum vessel in the former device. The MST vacu
vessel is thick and highly conducting.

VII. DISCUSSION

In the above, we have demonstrated, fairly conclusive
that vacuum vessel eddy currents are largely responsible
the severe locked mode problems encountered in RFX. N
however, that such problems are likely to be generic to
large RFP equipped with a thin vacuum vessel. In the
lowing, armed with this knowledge, we briefly examine fo
possible methods for alleviating locked mode problems
such RFPs. These methods are:~i! reducing the plasma cur
rent; ~ii ! decreasing the resistance of the vacuum vessel;~iii !

FIG. 6. The toroidal angular phase velocityVs of the characteristic dynamo
mode ~normalized to the corresponding velocityVs

(0) in the absence of
vacuum vessel eddy currents! as a function of the associated perturbed t
oidal magnetic fieldbf seen at the Mirnov coils@normalized with respect to
the edge equilibrium magnetic fieldBu(a)] calculated for MST~long-
dashed line! and RFX~short-dashed line!.
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decreasing the radial extent of the interspace between
vacuum vessel and the stabilizing shell; and~iv! spinning the
plasma using neutral beams.

Let us examine the scaling of the critical radial magne
field at the rational surfacebc

m,n ~normalized with respect to
the scale equilibrium field magneticB0), above which the
rotation of the characteristic dynamo mode is significan
reduced, with the toroidal plasma currentI f . It is assumed,
for the sake of simplicity, that the plasma density and
various equilibrium plasma profiles remain constant asI f is
varied. According to the well-known Connor–Taylor~con-
stant beta! scaling law,29 Te0}I f andtE}I f

3/2. It follows that
B0}I f , tH}I f

21, andnVs
(0) is independent ofI f . Further-

more, the intrinsic mode rotation parameterl (0)
m,n is also in-

dependent ofI f . RFX lies in the thin-shell regime discusse
in Sec. III. It is easily demonstrated thatbc

m,n/B0}I f
27/4 in

this limit. Other more empirical scaling laws~e.g., tE}I f)
yield similar results. Thus, we predict a very strong inve
scaling of the critical mode amplitude required to cause lo
ing of dynamo modes with increasing plasma current.
should certainly be possible to alleviate locked mode pr
lems by operating at reduced plasma current. Convers
locked mode problems can be expected to worsen dram
cally as the plasma current is increased.

Let us examine the scaling ofbc
m,n/B0 with the toroidal

resistivity Rf of the vacuum vessel. It is assumed, for t
sake of simplicity, that all of the plasma parameters rem
constant asRf is varied. It is also assumed that the poloid
resistivity Ru of the vessel scales likeRf . According to the
analysis in Sec. III, at fixed plasma parameters the eddy
rent slowing down torque acting on the characteristic d
namo mode attains its maximum value whenRf is such that
the intrinsic plasma rotation parameterl (0)

m,n @defined in Eq.
~55!# is of order unity. Sincel (0)

m,n.8 in RFX @see Eq.
~110!#, it is clear that the actual resistance of the RF
vacuum vessel is somewhat less than the value which m
mizes the slowing down torque acting on dynamo mod
Thus, in principle, the severe locked mode problems in R
could be alleviated by either making the vacuum ves
slightly more conducting or far more~i.e., by at least a factor
10! resistive. In practice, it is difficult to see how the RF
vacuum vessel could be made far more resistive: it is alre
fabricated out of very thin sheets of an extremely high res
tivity material ~i.e., inconel!. On the other hand, the vess
could easily be made more conducting, either by increas
its thickness or fabricating it out of a less resistive mater
In the thin-shell regime, it is easily demonstrated th
bc

m,n/B0}Rf
21/2}tb

1/2. Note the relatively weak scaling o
bc

m,n/B0 with tb . This suggests that increasing the time co
stanttb of the vacuum vessel is not a particularly effecti
way of alleviating locked mode problems.

Let us examine the scaling ofbc
m,n/B0 with the radial

distanced[c2b between the thick stabilizing shell and th
thin vacuum vessel. It is assumed, for the sake of simplic
that all of the plasma parameters remain constant asd is
varied. The spacingd between the two shells affectsbc

m,n/B0

primarily through the termEm,n(c)2Em,n(b), which ap-
pears in Eqs.~55! and~59!. Let us assume, as seems reas
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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able, thatEm,n(c)2Em,n(b)}d as d→0. RFX lies in the
thin-shell regime discussed in Sec. III. Unfortunately, the
is no dependence ofbc

m,n/B0 on d in this regime~since the
vacuum vessel fairly efficiently shields the tearing pertur
tion from the influence of the stabilizing shell in both th
thin-shell and thick-shell regimes!. This suggests that reduc
ing the radial spacing between the vacuum vessel and
stabilizing shell is not an effective way of alleviating locke
mode problems~unless the vacuum vessel is sufficiently th
and resistive to lie in the ultra-thin-shell regime!.

Let us, finally, examine the scaling ofbc
m,n/B0 with the

intrinsic ~i.e., that in the absence of vacuum vessel ed
currents! toroidal angular phase velocityVs

(0) of the charac-
teristic dynamo mode. It is assumed, for the sake of simp
ity, that we can increaseVs

(0) via tangential neutral beam
injection without substantially modifying any other plasm
parameters. In the thin-shell regime, it is easily demonstra
thatbc

m,n/B0}Vs
(0) . The relatively strong scaling ofbc

m,n/B0

with increasingVs
(0) suggests that spinning the plasma v

tangential neutral beam injection is a fairly effective way
alleviating the locked mode problems. A crude estimate
the neutral beam power required to doubleVs

(0) in RFX is

P05
MufV

ktE
, ~120!

whereM;331027 kg is the plasma mass,uf;5 km s21 is
the intrinsic plasma toroidal velocity,V is the velocity of the
injected particles,k52.8, andtE;1023 s is the energy con
finement time of the plasma. Now,V;33106 m s21 for 50 k
eV hydrogen beams, givingP0;1.7 MW. We conclude tha
at least 2 MW of neutral beam power would be required
significantly alleviate the locked mode problems in RFX.
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APPENDIX: THE RFX VACUUM VESSEL

The RFX vacuum vessel7 is fabricated out of incone
~alloy 625!, and consists of a two-shell sandwich structu
with a 2 mmthick inner shell and a 1 mmthick outer shell
connected together by a 0.5 mm thick corrugated shee
addition, there are 144 poloidal stiffening rings connect
the inner and outer shells. The spacing between the
shells is 3 cm. The calculated poloidal and toroidal res
tances of the vessel areRu54131026V and Rf51.1
31023V, respectively.7

According to Gimblett,22 the time constant of a she
whose resistivities differ in the poloidal and toroidal dire
tions is given by
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. ~A1!

For the case of the RFX vacuum vessel~with m51 andn
59), we obtaintb53.33 ms.

In this paper, we define the effective thickness of t
RFX vacuum vessel to bedb53.5 mm, which is the total
thickness of the inconel which makes up the vessel o
most of its area. It follows that the effective resistivity of th
vessel is given by

1

sb
5

m0bdb

tb
564.731028 Vm. ~A2!

Note that the effective resistivity is less than the actual re
tivity of inconel (12831028 Vm) in order to take account o
the low resistance paths afforded by the poloidal stiffen
rings.

1J. A. Wesson and D. J. Campbell,Tokamaks, 2nd ed.~Clarenden, Oxford,
1998!.

2H. A. B. Bodin, Nucl. Fusion30, 1717~1990!.
3J. B. Taylor, Phys. Rev. Lett.33, 1139~1974!.
4B. Alpher, M. K. Bevir, H. A. B. Bodinet al., Plasma Phys. Controlled
Fusion31, 205 ~1989!.

5S. Ortolani and D. D. Schnack,Magnetohydrodynamics of Plasma Rela
ation ~World Scientific, Singapore, 1993!.

6R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Spro
Fusion Technol.19, 131 ~1991!.

7F. Gnesotto, P. Sonato, W. R. Bakeret al., Fusion Eng. Des.25, 335
~1995!.

8R. Fitzpatrick, ‘‘Formation and locking of the slinky mode in reverse
field pinches,’’ to appear in Phys. Plasmas.

9A. F. Almagri, S. Assasi, S. C. Prager, J. S. Sarff, and D. W. Kerst, Ph
Fluids B 4, 4080~1992!.

10V. Antoni, L. Apolloni, M. Bagatinet al., in Plasma physics and con
trolled nuclear fusion 1994, Proceedings 15th International Conferenc
Seville 1994~International Atomic Energy Agency, Vienna, 1995!, Vol. 2,
p. 405.

11T. Bolzonella, S. Ortolani, and J. S. Sarff, inControlled fusion and plasma
physics, Proceedings 25th European Conference, Prague 1998~European
Physical Society, Petit-Lancy, 1998!, p. 789.

12Y. Yagi, S. Sekine, T. Shimadaet al., ‘‘Front-end system of the TPE-RX
reversed field pinch machine,’’ to appear in Fusion Eng. Des.

13Y. Yagi ~private communication, 1988!.
14S. Ortolani,~private communication, 1998!.
15M. F. F. Nave and J. A. Wesson, Nucl. Fusion30, 2575~1990!.
16The standard large aspect-ratio ordering isR0 /a@1, whereR0 anda are

the major and minor radii of the plasma, respectively.
17The conventional definition of this parameter isb52m0^p&/^B2&, where

^¯& denotes a volume average,p is the plasma pressure, andB is the
magnetic field strength.

18V. Antoni, D. Merlin, S. Ortolani, and R. Paccagnella, Nucl. Fusion26,
1711 ~1986!.

19W. A. Newcomb, Ann. Phys.~N.Y.! 10, 232 ~1960!.
20H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids6, 459~1963!.
21R. Fitzpatrick, Nucl. Fusion33, 1049~1993!.
22C. G. Gimblett, Nucl. Fusion26, 617 ~1986!.
23D. J. Den Hartog, A. F. Almagri, J. T. Chapmanet al., Phys. Plasmas2,

2281 ~1995!.
24G. Ara, B. Basu, B. Coppi, G. Laval, M. N. Rosenbluth, and B. V. Wa

dell, Ann. Phys.~N.Y.! 112, 443 ~1978!.
25M. R. Stoneking, S. A. Hokin, S. C. Prager, G. Fiksel, H. Ji, and D. J. D

Hartog, Phys. Rev. Lett.73, 549 ~1994!.
26D. E. Post, K. Borrass, J. D. Callenet al., in ITER Physics, ITER Docu-

ment Series No. 21~International Atomic Energy Agency, Vienna, 1991!.
27A. F. Almagri, J. T. Chapman, C. S. Chiang, D. Craig, D. J. Den Hart

C. C. Hegna, and S. C. Prager, Phys. Plasmas5, 3982~1998!.
28A. K. Hansen, A. F. Almagri, D. J. Den Hartog, S. C. Prager, and J.

Sarff, Phys. Plasmas5, 2942~1998!.
29J. W. Connor and J. B. Taylor, Phys. Fluids27, 2676~1984!.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp


